Changes in the Metabolome of Picea balfouriana Embryogenic Tissues That Were Linked to Different Levels of 6-BAP by Gas Chromatography-Mass Spectrometry Approach
Author:   Source:   Time: 2015-12-29

说明: IMG_256

Somatic embryogenesis of Picea balfouriana.

(A) Embryogenic tissues. (B) Somatic embryos. (C) Germination of somatic embryos.

Abstract

Embryogenic cultures of Picea balfouriana, which is an important commercial species for reforestation in Southern China, easily lose their embryogenic ability during long-term culture. Embryogenic tissue that proliferated at lower concentrations (3.6 μM and 2.5 μM) of 6-benzylaminopurine (6-BAP) were more productive, and generated 113 ± 6 and 89 ± 3 mature embryos per 100 mg embryogenic tissue, respectively. A metabolomic approach was used to study the changes in metabolites linked to embryogenic competence related to three different 6-BAP concentrations (2.5 μM, 3.6 μM, and 5 μM). A total of 309 compounds were obtained, among which 123 metabolites mapped to Kyoto Encyclopedia of Genes and genomes (KEGG) pathways. The levels of 35 metabolites were significantly differentially regulated among the three 6-BAP treatments, and 32 metabolites differed between the 2.5 μM and 5 μM treatments. A total of 17 metabolites appeared only once among the three comparisons. The combination of a score plot and a loading plot showed that in the samples with higher embryogenic ability (3.6 μM and 2.5 μM), up-regulated metabolites were mostly amino acids and down-regulated metabolites were mostly primary carbohydrates (especially sugars). These results suggested that 6-BAP may influence embryogenic competence by nitrogen metabolism, which could cause an increase in amino acid levels and higher amounts of aspartate, isoleucine, and leucine in tissues with higher embryogenic ability. Furthermore, we speculated that 6-BAP may affect the amount of tryptophan in tissues, which would change the indole-3-acetic acid levels and influence the embryogenic ability.

The paper link:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141841